首页> 外文OA文献 >$\mathcal{H}$-matrix based second moment analysis for rough random fields and finite element discretizations
【2h】

$\mathcal{H}$-matrix based second moment analysis for rough random fields and finite element discretizations

机译:$ \ mathcal {H} $ - 基于矩阵的粗糙随机二阶矩分析   场和有限元离散化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the efficient solution of strongly elliptic partial differentialequations with random load based on the finite element method. The solution'stwo-point correlation can efficiently be approximated by means of an$\mathcal{H}$-matrix, in particular if the correlation length is rather shortor the correlation kernel is non-smooth. Since the inverses of the finiteelement matrices which correspond to the differential operator underconsideration can likewise efficiently be approximated in the$\mathcal{H}$-matrix format, we can solve the correspondent$\mathcal{H}$-matrix equation in essentially linear time by using the$\mathcal{H}$-matrix arithmetic. Numerical experiments for three-dimensionalfinite element discretizations for several correlation lengths and differentsmoothness are provided. They validate the presented method and demonstratethat the computation times do not increase for non-smooth or shortly correlateddata.
机译:我们考虑了基于有限元方法的带随机载荷的强椭圆偏微分方程的有效解。解决方案的两点相关可以通过$ \ mathcal {H} $-矩阵有效地近似,特别是如果相关长度相当短或相关内核不平滑的话。由于对应于微分算子欠考虑的有限元矩阵的逆可以同样有效地以$ \ mathcal {H} $-matrix格式近似,因此我们可以以基本线性的方式求解对应的$ \ mathcal {H} $-matrix方程时间使用$ \ mathcal {H} $-矩阵算法。提供了几种相关长度和不同平滑度的三维有限元离散化的数值实验。他们验证了所提出的方法并证明,对于不平滑或短相关的数据,计算时间不会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号